CLASS 10

Centre-tap full wave rectifier

Centre-tap full-wave rectifier

$\mathbf{D}_{\mathbf{2}} \mathbf{f b}$. D $\mathbf{1} \mathbf{r b}$ (

Current flowing through R_{L} will always be in the same direction, independent of whether D_{1} or D_{2} that was $f b$.

NORLAILI MOHD NOH 2008/2009

Centre-tap full wave rectifier with potential barrier effect considered

During the $+v e$ half cycle, D_{1} will be fb if $V_{A C}>V_{0}$. D_{1} is a s/c. $V_{A C}=V_{o}+V_{\text {out }} \cdot V_{\text {out }}=V_{A C}-V_{0}$. During the -ve half cycle, D_{2} will be $f b$ if $V_{B C}>V_{0}$. D_{2} is a s/c. $V_{B C}=V_{0}+V_{\text {out }} \cdot V_{\text {out }}=V_{B C}-V_{0}$.

During the +ve half cycle, D_{1} will be fb.
$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{AC}}-\mathrm{V}_{\mathbf{0}}$. Max. $_{\mathrm{AB}}$
V_{AC} is $\mathrm{V}_{\mathrm{p}} / 2$. Hence,
$\mathbf{V}_{\text {out(max) }}=\mathbf{V}_{\mathrm{p}} / \mathbf{2}-\mathbf{V}_{\mathbf{0}}$.

During the -ve half cycle, D_{2} will be fb. $V_{B C}$ $\mathbf{V}_{\text {out }}=\mathbf{V}_{\text {BC }}-\mathbf{V}_{\mathbf{0}}$. Max. V_{BC} is $\mathrm{V}_{\mathrm{p}} / 2$. Hence, $\mathbf{V}_{\text {out(max) }}=\mathbf{V}_{\mathrm{p}} / \mathbf{2}-\mathrm{V}_{\mathbf{0}}$.

Average voltage of a full-wave rectifier

$$
\begin{aligned}
\mathrm{V}_{\mathrm{avg}} & =\frac{\text { Area }}{\mathrm{T}}=\frac{\text { Area }}{2 \pi} \\
\mathrm{~V}_{\mathrm{avg}} & =\frac{1}{2 \pi} \times 2 \int_{0}^{\pi} \mathrm{V}_{\mathrm{p}} \sin \theta \mathrm{~d} \theta \\
& =\frac{\mathrm{V}_{\mathrm{p}}}{\pi}[-\cos \theta]_{0}^{\pi} \\
& =\frac{2 \mathrm{~V}_{\mathrm{p}}}{\pi}
\end{aligned}
$$

If the input to the half-wave rectifier is the same as the input to the full-wave rectifier, i.e. $V_{i n}$, the out signal of the half-wave rectifier has an average value of, $V_{a v g}=V_{p} / \pi$.
Thus, $\mathbf{V}_{\text {avg_Half-wave }}=1 / 2 \mathbf{V}_{\text {avg_Full-wave }}$

Duration=1/frequency $\mathrm{T}=\mathbf{1} / \mathbf{f}$
$\mathbf{T}_{\text {Half-wave }}=\mathbf{T}_{\text {input }}$
$\mathbf{f}_{\text {Half-wave }}=\mathbf{f}_{\text {input }}$
$\mathbf{T}_{\text {Full-wave }}=1 / 2 \mathbf{T}_{\text {Half-wave }}$
$\mathbf{f}_{\text {Full-wave }}=\mathbf{2} f_{\text {Half-wave }}$ Hence,
$\mathbf{f}_{\text {Full-wave }}=\mathbf{2} f_{\text {input }}$

PIV ${ }_{\text {D } 2}$ can be determined by analyzing the circuit when $V_{\text {in }}$ is at its +ve half cycle.
PIV $\mathbf{D}_{\mathbf{D} 2}=\mathbf{V}_{\text {out }}-\left(-\mathbf{V}_{\mathrm{p}} / \mathbf{2}\right)$
$\mathbf{V}_{\text {out }}=\left(V_{p} / 2\right)-V_{0}$
$\operatorname{PIV}_{\mathrm{D} 2}=\left(\mathrm{V}_{\mathrm{p}} / 2\right)-\mathrm{V}_{\mathrm{o}}-\left(-\mathrm{V}_{\mathrm{p}} / 2\right)$
$\mathrm{PIV}_{\mathrm{D} 2}=\mathrm{V}_{\mathrm{p}}-\mathrm{V}_{\mathrm{o}}$

PIV $\mathbf{V}_{\text {D } 1}$ can be determined by analyzing the circuit when $V_{\text {in }}$ is at its -ve half cycle.

$$
\begin{aligned}
& P I V_{D 1}=V_{\text {out }}-\left(-V_{p} / 2\right) \\
& V_{\text {out }}=\left(V_{p} / 2\right)-V_{0} \\
& P I V_{D 1}=\left(V_{p} / 2\right)-V_{0}-\left(-V_{p} / 2\right) \\
& \text { PIV }_{\text {D } 1}=V_{p}-V_{0}
\end{aligned}
$$

Bridge full-wave rectifier

$$
\begin{aligned}
& \mathbf{V}_{\text {out }}=\mathbf{V}_{\text {in }} \\
& \text { If } \mathbf{V}_{\text {in }}=\mathbf{V}_{\mathbf{p}}, \\
& \mathbf{V}_{\text {out }}=\mathbf{V}_{\mathbf{p}}
\end{aligned}
$$

During -ve half cycle, D_{3} and D_{4} are $f b . V_{\text {out }}$ is still +ve at A and -ve at B.

$$
\begin{aligned}
& V_{o u t}=V_{i n} \\
& \text { If } V_{\text {in }}=V_{p} \\
& V_{o u t}=V_{p}
\end{aligned}
$$

Overall performance

If potential barrier of the diode is considered:

$V_{\text {in }}=2 V_{0}+V_{\text {out }}$
$V_{\text {out }}=V_{\text {in }}-2 V_{\text {o }}$
D_{1} and D_{2} will only be fob if $V_{\text {in }}>\mathbf{2} V_{0}$

Overall performance:

PIV of the diodes in the bridge full-wave rectifier

To determine PIV $_{\text {D1 }}$ and PIV $_{\text {D2 }}$, analyze the circuit when $V_{i n}$ is at its negative half cycle.
When determining PIV of the diodes,
$V_{\text {in }}=V_{p}$.
$\mathbf{V}_{\mathrm{p}}-\mathbf{V}_{\text {out }}=0$
PIV ${ }_{\text {D2 }}-V_{\text {out }}+P I V_{D 1}-V_{p}=0$
$P I V_{D 2}+P I V_{D 1}-V_{p}=V_{\text {out }}$
Assuming the diodes are identical and therefore PIV $_{\mathbf{D} 2}=\mathbf{P I V}_{\mathrm{D} 1}$
$\mathbf{V}_{\mathrm{p}}-\left(\mathrm{PIV}_{\mathrm{D} 2}+\mathrm{PI} \mathrm{V}_{\mathrm{D} 1}-\mathrm{V}_{\mathrm{p}}\right)=0$
$2 V_{p}-2 P I V=0$
$P I V=V_{p}$

If the potential barrier of each diode is taken into consideration:

$\mathbf{V}_{\mathrm{p}}-\mathbf{2} \mathrm{V}_{\mathrm{o}}-\mathrm{V}_{\text {out }}=0$
$P V_{D 2}-V_{\text {out }}+P I V_{D 1}-V_{p}=0$
$\mathrm{PIV}_{\mathrm{D} 2}+\mathrm{PIV}_{\mathrm{D} 1}-\mathrm{V}_{\mathrm{p}}=\mathrm{V}_{\text {out }}$
$\mathrm{V}_{\mathrm{p}}-\mathbf{2} \mathrm{V}_{\mathrm{o}}-\left(\mathrm{PIV}_{\mathrm{D} 2}+\mathrm{PIV}_{\mathrm{D} 1}-\mathrm{V}_{\mathrm{p}}\right)=0$ Assuming the diodes are identical and therefore $\mathbf{P I V}_{\mathbf{D} 2}=\mathbf{P I V}_{\mathrm{D} 1}=\mathbf{P I V}$
$2 \mathrm{~V}_{\mathrm{p}}-2 \mathrm{~V}_{\mathrm{o}}-2 \mathrm{PIV}=0$
PIV $=V_{p}-V_{0}$

